Airfoil shape optimization using genetic algorithm coupled deep neural networks

نویسندگان

چکیده

To alleviate the computational burden associated with fluid dynamics (CFD) simulation stage and improve aerodynamic optimization efficiency, this work develops an innovative procedure for airfoil shape optimization, which is implemented through coupling genetic algorithm (GA) optimizer coefficients prediction network (ACPN) model. The ACPN established using a fully connected neural geometry as input output. results show that ACPN's mean accuracy lift drag coefficient high up to about 99.02%. Moreover, time of each within 5 ms, four orders magnitude faster compared CFD solver (3 min). Taking advantage fast accurate prediction, proposed model replaces expensive simulations couples GA force change maximize lift–drag ratio under multiple constraints. In terms optimized airfoils can be obtained 25 s. Even considering extra 50 h spent on data preparing 20 s training, overall calculation cost reduced by remarkable 62.1% GA-CFD method (5.5 days). Furthermore, GA-ACPN improves without constraint 51.4% 55.4% NACA0012 airfoil, respectively, while 50.3% 60.0% improvement achieved method. These indicate approach significantly enhances efficiency has great potential address varying problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airfoil Shape Optimization with Adaptive Mutation Genetic Algorithm

An efficient method for scattering Genetic Algorithm (GA) individuals in the design space is proposed to accelerate airfoil shape optimization. The method used here is based on the variation of the mutation rate for each gene of the chromosomes by taking feedback from the current population. An adaptive method for airfoil shape parameterization is also applied and its impact on the optimum desi...

متن کامل

Low Reynolds Number Airfoil Optimization Using Genetic Algorithm

The optimization of a low Reynolds number airfoil for use in small wind turbines is carried out using Genetic Algorithm (GA) optimization. With the aim of creating a roughness insensitive airfoil for the tip region of turbine blades, a multi-objective genetic algorithm code is developed. A review of existing parameterization and optimization methods are presented along with the strategies appli...

متن کامل

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

متن کامل

Scalable Bayesian Optimization Using Deep Neural Networks

Bayesian optimization is an effective methodology for the global optimization of functions with expensive evaluations. It relies on querying a distribution over functions defined by a relatively cheap surrogate model. An accurate model for this distribution over functions is critical to the effectiveness of the approach, and is typically fit using Gaussian processes (GPs). However, since GPs sc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics of Fluids

سال: 2023

ISSN: ['1527-2435', '1089-7666', '1070-6631']

DOI: https://doi.org/10.1063/5.0160954